69 research outputs found

    Soybean Proteome Database 2012: update on the comprehensive data repository for soybean proteomics

    Get PDF
    The Soybean Proteome Database (SPD) was created to provide a data repository for functional analyses of soybean responses to flooding stress, thought to be a major constraint for establishment and production of this plant. Since the last publication of the SPD, we thoroughly enhanced the contents of database, particularly protein samples and their annotations from several organelles. The current release contains 23 reference maps of soybean (Glycine max cv. Enrei) proteins collected from several organs, tissues, and organelles including the maps for plasma membrane, cell wall, chloroplast, and mitochondrion, which were analyzed by two-dimensional polyacrylamide gels. Furthermore, the proteins analyzed with gel-free proteomics technique have been added and are available online. In addition to protein fluctuations under flooding, those of salt and drought stress have been included in the current release. A case analysis employing a portion of those newly released data was conducted, and the results will be shown. An ‘omics table has also been provided to reveal relationships among mRNAs, proteins, and metabolites with a unified temporal-profile tag in order to facilitate retrieval of the data based on the temporal profiles. An intuitive user interface based on dynamic HTML enables users to browse the network as well as the profiles of the multiple “omes” in an integrated fashion. The SPD is available at: http://proteome.dc.affrc.go.jp/Soybean

    Low-dose Warfarin Functions as an Immunomodulator to Prevent Cyclophosphamide-induced NOD Diabetes

    Get PDF
    Warfarin has been used as an anticoagulant for a long time. Recently, the pleiotropic effect of warfarin has been investigated. As low-dose warfarin has been reported to have anti-inflammatory effect through suppression of IL-6 secretion and inhibit the immune-associated signal between Tyro3 and its ligand, Gas6, the effect of low-dose warfarin on autoimmune diabetes in NOD mice was examined. To investigate the anti-inflammatory effect of warfarin, IL-6 secretion by splenocytes was examined in the presence of various concentrations of warfarin. Low concentration of warfarin inhibited IL-6 secretion. mRNA expression of Rse, one of the Tyro3 receptor family members, and Gas6 were analyzed in NOD mice. It was detected in islets, splenocytes and bone-marrow derived dendritic cells. 0.25 mg/l or 0.50 mg/l of warfarin was orally administered to NOD mice as a cyclophosphamide-induced diabetes model. Oral administration of warfarin at much lower doses than those clinically used as an anticoagulant significantly reduced the degree of insulitis and diabetes incidence in this model. We previously demonstrated that anti-FasL Ab-treatment led to complete prevention of autoimmune diabetes in NOD mice. As Fas/FasL signaling is reported to be essential for cyclophosphamide-induced diabetes model, we extracted RNA from lymphocytes of the inguinal lymph nodes of anti-FasL Ab-treated NOD mice and performed real-time PCR to determine expression of Rse gene. Interestingly, the expression of Rse gene related to the blockade of Fas/FasL signaling was reduced to less than half the level of untreated mice. In conclusion, low-dose warfarin is a potential immunomodulator which can prevent autoimmune diabetes. Type 1 diabetes is a chronic autoimmune disease caused by autoreactive T cells promoting the specific destruction of insulin-producing β cells of the pancreatic islets (1,6). Nonobese diabetic (NOD) mouse is an animal model of human autoimmune diabetes (19). In the NOD mouse, diabetes develops as the result of a chronic inflammation that starts with leukocytic infiltration of islets from 3-5 weeks of age and gradually exacerbates until hyperglycemia develops after 16 weeks of age in a high percentage of female mice. Warfarin has been widely used for a long time as an oral anticoagulant agent. In addition, Kater et al. reported the pleiotropic effect of low-dose warfarin related with inflammation, demonstrating that low-dose warfarin inhibited inflammatory signal transduction through suppression of TNF-α induced IL-6 secretion from murine macrophages (12)

    Rice Annotation Database (RAD): a contig-oriented database for map-based rice genomics

    Get PDF
    A contig-oriented database for annotation of the rice genome has been constructed to facilitate map-based rice genomics. The Rice Annotation Database has the following functional features: (i) extensive effort of manual annotations of P1-derived artificial chromosome/bacterial artificial chromosome clones can be merged at chromosome and contig-level; (ii) concise visualization of the annotation information such as the predicted genes, results of various prediction programs (RiceHMM, Genscan, Genscan+, Fgenesh, GeneMark, etc.), homology to expressed sequence tag, full-length cDNA and protein; (iii) user-friendly clone / gene query system; (iv) download functions for nucleotide, amino acid and coding sequences; (v) analysis of various features of the genome (GC-content, average value, etc.); and (vi) genome-wide homology search (BLAST) of contig- and chromosome-level genome sequence to allow comparative analysis with the genome sequence of other organisms. As of October 2004, the database contains a total of 215 Mb sequence with relevant annotation results including 30 000 manually curated genes. The database can provide the latest information on manual annotation as well as a comprehensive structural analysis of various features of the rice genome. The database can be accessed at http://rad.dna.affrc.go.jp/

    Characterization of the novel mutant A78T-HERG from a long QT syndrome type 2 patient: Instability of the mutant protein and stabilization by heat shock factor 1

    Get PDF
    Background:The human ether-a-go-go-related gene (HERG) encodes the α-subunit of rapidly activating delayed-rectifier potassium channels. Mutations in this gene cause long QT syndrome type 2 (LQT2). In most cases, mutations reduce the stability of the channel protein, which can be restored by heat shock (HS). Methods: We identified the novel mutant A78T-HERG in a patient with LQT2. The purpose of the current study was to characterize this mutant protein and test whether HS and heat shock factors (HSFs) could stabilize the mutant protein. A78T-HERG and wild-type HERG (WT-HERG) were expressed in HEK293 cells and analyzed by immunoblotting, immunoprecipitation, immunofluorescence, and whole-cell patch clamping. Results: When expressed in HEK293 cells, WT-HERG gave rise to immature and mature forms of the protein at 135 and 155 kDa, respectively. A78T-HERG gave rise only to the immature form, which was heavily ubiquitinated. The proteasome inhibitor MG132 increased the expression of immature A78T-HERG and increased both the immature and mature forms of WT-HERG. WT-HERG, but not A78T-HERG, was expressed on the plasma membrane. In whole-cell patch clamping experiments, depolarizing pulses evoked E4031-sensitive HERG channel currents in cells transfected with WT-HERG, but not in cells transfected with A78T-HERG. The A78V mutant, but not A78G mutant, remained in the immature form similarly to A78T. Maturation of the A78T-HERG protein was facilitated by HS, expression of HSF-1, or exposure to geranyl geranyl acetone. Conclusions: A78T-HERG was characterized by protein instability and reduced expression on the plasma membrane. The stability of the mutant was partially restored by HSF-1, indicating that HSF-1 is a target for the treatment for LQT2 caused by the A78T mutation in HERG

    Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana

    Get PDF
    We present here the annotation of the complete genome of rice Oryza sativa L. ssp. japonica cultivar Nipponbare. All functional annotations for proteins and non-protein-coding RNA (npRNA) candidates were manually curated. Functions were identified or inferred in 19,969 (70%) of the proteins, and 131 possible npRNAs (including 58 antisense transcripts) were found. Almost 5000 annotated protein-coding genes were found to be disrupted in insertional mutant lines, which will accelerate future experimental validation of the annotations. The rice loci were determined by using cDNA sequences obtained from rice and other representative cereals. Our conservative estimate based on these loci and an extrapolation suggested that the gene number of rice is ~32,000, which is smaller than previous estimates. We conducted comparative analyses between rice and Arabidopsis thaliana and found that both genomes possessed several lineage-specific genes, which might account for the observed differences between these species, while they had similar sets of predicted functional domains among the protein sequences. A system to control translational efficiency seems to be conserved across large evolutionary distances. Moreover, the evolutionary process of protein-coding genes was examined. Our results suggest that natural selection may have played a role for duplicated genes in both species, so that duplication was suppressed or favored in a manner that depended on the function of a gene

    Suspected idiopathic sclerosing orbital inflammation presenting as immunoglobulin G4-related disease: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Idiopathic sclerosing orbital inflammation is a rare and ill-defined heterogeneous entity, and a distinct subset of orbital inflammation. Recently, attention has been focused on immunoglobulin G4-related disease complicated with fibrotic changes in some other organs with high serum immunoglobulin G4 levels. This report presents a case of suspected idiopathic sclerosing orbital inflammation complicated with high serum immunoglobulin G4 levels.</p> <p>Case presentation</p> <p>An 82-year-old Japanese woman had a 30-year history of chronic thyroiditis. She experienced right ptosis and eyelid swelling. These symptoms gradually developed over five years. The clinical and radiographic findings suggested that our patient had idiopathic sclerosing orbital inflammation. We were unable to obtain our patient's consent to perform a biopsy. While the serum immunoglobulin G level was within the normal limits, the serum immunoglobulin G4 level was significantly elevated. The serum immunoglobulin G4 levels decreased after the administration of oral prednisolone at a daily dose of 20 mg. In addition, the swelling and ptosis of the right upper eyelid disappeared gradually after four weeks. Our patient was then suspected to have idiopathic sclerosing orbital inflammation complicated with immunoglobulin G4-related disease and chronic thyroiditis.</p> <p>Conclusion</p> <p>An orbital pseudotumor of this type is indicative of idiopathic sclerosing orbital inflammation immunoglobulin G4-related disease. Immunoglobulin G4 may thus be considered a subclass of immunoglobulin G when the serum immunoglobulin G level is within normal limits.</p

    An Integrated Approach of Proteomics and Computational Genetic Modification Effectiveness Analysis to Uncover the Mechanisms of Flood Tolerance in Soybeans

    No full text
    Flooding negatively affects the growth of soybeans. Recently, omic approaches have been used to study abiotic stress responses in plants. To explore flood-tolerant genes in soybeans, an integrated approach of proteomics and computational genetic modification effectiveness analysis was applied to the soybean (Glycine max L. (Merrill)). Flood-tolerant mutant and abscisic acid (ABA)-treated soybean plants were used as the flood-tolerant materials. Among the primary metabolism, glycolysis, fermentation, and tricarboxylic acid cycle were markedly affected under flooding. Fifteen proteins, which were related to the affected processes, displayed similar protein profiles in the mutant and ABA-treated soybean plants. Protein levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), aconitase 1, and 2-oxoglutarate dehydrogenase were higher in flood-tolerant materials than in wild-type soybean plants under flood conditions. These three proteins were positioned in each of the three enzyme groups revealed by our computational genetic modification effectiveness analysis, and the three proteins configured a candidate set of genes to promote flood tolerance. Additionally, transcript levels of GAPDH were similar in flood-tolerant materials and in unstressed plants. These results suggest that proteins related to energy metabolism might play an essential role to confer flood tolerance in soybeans
    corecore